3.328 \(\int \sec ^5(e+f x) \sqrt{a+b \sin ^2(e+f x)} \, dx\)

Optimal. Leaf size=143 \[ \frac{a (3 a+4 b) \tanh ^{-1}\left (\frac{\sqrt{a+b} \sin (e+f x)}{\sqrt{a+b \sin ^2(e+f x)}}\right )}{8 f (a+b)^{3/2}}+\frac{\tan (e+f x) \sec ^3(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2}}{4 f (a+b)}+\frac{(3 a+4 b) \tan (e+f x) \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{8 f (a+b)} \]

[Out]

(a*(3*a + 4*b)*ArcTanh[(Sqrt[a + b]*Sin[e + f*x])/Sqrt[a + b*Sin[e + f*x]^2]])/(8*(a + b)^(3/2)*f) + ((3*a + 4
*b)*Sec[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2]*Tan[e + f*x])/(8*(a + b)*f) + (Sec[e + f*x]^3*(a + b*Sin[e + f*x]^
2)^(3/2)*Tan[e + f*x])/(4*(a + b)*f)

________________________________________________________________________________________

Rubi [A]  time = 0.139333, antiderivative size = 143, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {3190, 382, 378, 377, 206} \[ \frac{a (3 a+4 b) \tanh ^{-1}\left (\frac{\sqrt{a+b} \sin (e+f x)}{\sqrt{a+b \sin ^2(e+f x)}}\right )}{8 f (a+b)^{3/2}}+\frac{\tan (e+f x) \sec ^3(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2}}{4 f (a+b)}+\frac{(3 a+4 b) \tan (e+f x) \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{8 f (a+b)} \]

Antiderivative was successfully verified.

[In]

Int[Sec[e + f*x]^5*Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

(a*(3*a + 4*b)*ArcTanh[(Sqrt[a + b]*Sin[e + f*x])/Sqrt[a + b*Sin[e + f*x]^2]])/(8*(a + b)^(3/2)*f) + ((3*a + 4
*b)*Sec[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2]*Tan[e + f*x])/(8*(a + b)*f) + (Sec[e + f*x]^3*(a + b*Sin[e + f*x]^
2)^(3/2)*Tan[e + f*x])/(4*(a + b)*f)

Rule 3190

Int[cos[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Sin[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b*ff^2*x^2)^p, x], x, Sin[e +
f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rule 382

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(b*x*(a + b*x^n)^(p + 1)*(
c + d*x^n)^(q + 1))/(a*n*(p + 1)*(b*c - a*d)), x] + Dist[(b*c + n*(p + 1)*(b*c - a*d))/(a*n*(p + 1)*(b*c - a*d
)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n, q}, x] && NeQ[b*c - a*d, 0] && EqQ[
n*(p + q + 2) + 1, 0] && (LtQ[p, -1] ||  !LtQ[q, -1]) && NeQ[p, -1]

Rule 378

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1)*(c
 + d*x^n)^q)/(a*n*(p + 1)), x] - Dist[(c*q)/(a*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1), x], x] /
; FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[n*(p + q + 1) + 1, 0] && GtQ[q, 0] && NeQ[p, -1]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \sec ^5(e+f x) \sqrt{a+b \sin ^2(e+f x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\sqrt{a+b x^2}}{\left (1-x^2\right )^3} \, dx,x,\sin (e+f x)\right )}{f}\\ &=\frac{\sec ^3(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \tan (e+f x)}{4 (a+b) f}+\frac{(3 a+4 b) \operatorname{Subst}\left (\int \frac{\sqrt{a+b x^2}}{\left (1-x^2\right )^2} \, dx,x,\sin (e+f x)\right )}{4 (a+b) f}\\ &=\frac{(3 a+4 b) \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)} \tan (e+f x)}{8 (a+b) f}+\frac{\sec ^3(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \tan (e+f x)}{4 (a+b) f}+\frac{(a (3 a+4 b)) \operatorname{Subst}\left (\int \frac{1}{\left (1-x^2\right ) \sqrt{a+b x^2}} \, dx,x,\sin (e+f x)\right )}{8 (a+b) f}\\ &=\frac{(3 a+4 b) \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)} \tan (e+f x)}{8 (a+b) f}+\frac{\sec ^3(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \tan (e+f x)}{4 (a+b) f}+\frac{(a (3 a+4 b)) \operatorname{Subst}\left (\int \frac{1}{1-(a+b) x^2} \, dx,x,\frac{\sin (e+f x)}{\sqrt{a+b \sin ^2(e+f x)}}\right )}{8 (a+b) f}\\ &=\frac{a (3 a+4 b) \tanh ^{-1}\left (\frac{\sqrt{a+b} \sin (e+f x)}{\sqrt{a+b \sin ^2(e+f x)}}\right )}{8 (a+b)^{3/2} f}+\frac{(3 a+4 b) \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)} \tan (e+f x)}{8 (a+b) f}+\frac{\sec ^3(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \tan (e+f x)}{4 (a+b) f}\\ \end{align*}

Mathematica [C]  time = 14.3778, size = 669, normalized size = 4.68 \[ -\frac{\tan (e+f x) \sec ^3(e+f x) \left (\frac{b \sin ^2(e+f x)}{a}+1\right ) \left (10 b \sin ^2(e+f x) \sqrt{-\frac{(a+b) \tan ^2(e+f x) \sec ^2(e+f x) \left (a+b \sin ^2(e+f x)\right )}{a^2}}+15 a \sqrt{-\frac{(a+b) \tan ^2(e+f x) \sec ^2(e+f x) \left (a+b \sin ^2(e+f x)\right )}{a^2}}+32 b \sin ^2(e+f x) \left (-\frac{(a+b) \tan ^2(e+f x)}{a}\right )^{7/2} \, _2F_1\left (2,4;\frac{7}{2};-\frac{(a+b) \tan ^2(e+f x)}{a}\right ) \sqrt{\frac{\sec ^2(e+f x) \left (a+b \sin ^2(e+f x)\right )}{a}}+32 a \left (-\frac{(a+b) \tan ^2(e+f x)}{a}\right )^{7/2} \, _2F_1\left (2,4;\frac{7}{2};-\frac{(a+b) \tan ^2(e+f x)}{a}\right ) \sqrt{\frac{\sec ^2(e+f x) \left (a+b \sin ^2(e+f x)\right )}{a}}-32 b \sin ^2(e+f x) \left (-\frac{(a+b) \tan ^2(e+f x)}{a}\right )^{5/2} \, _2F_1\left (2,4;\frac{7}{2};-\frac{(a+b) \tan ^2(e+f x)}{a}\right ) \sqrt{\frac{\sec ^2(e+f x) \left (a+b \sin ^2(e+f x)\right )}{a}}-32 a \left (-\frac{(a+b) \tan ^2(e+f x)}{a}\right )^{5/2} \, _2F_1\left (2,4;\frac{7}{2};-\frac{(a+b) \tan ^2(e+f x)}{a}\right ) \sqrt{\frac{\sec ^2(e+f x) \left (a+b \sin ^2(e+f x)\right )}{a}}-10 b \sin ^2(e+f x) \sin ^{-1}\left (\sqrt{-\frac{(a+b) \tan ^2(e+f x)}{a}}\right )-15 a \sin ^{-1}\left (\sqrt{-\frac{(a+b) \tan ^2(e+f x)}{a}}\right )-20 b \sin ^2(e+f x) \left (-\frac{(a+b) \tan ^2(e+f x)}{a}\right )^{3/2} \sqrt{\frac{\sec ^2(e+f x) \left (a+b \sin ^2(e+f x)\right )}{a}}-30 a \left (-\frac{(a+b) \tan ^2(e+f x)}{a}\right )^{3/2} \sqrt{\frac{\sec ^2(e+f x) \left (a+b \sin ^2(e+f x)\right )}{a}}\right )}{40 f \sqrt{a+b \sin ^2(e+f x)} \left (-\frac{(a+b) \tan ^2(e+f x)}{a}\right )^{3/2} \sqrt{\frac{\sec ^2(e+f x) \left (a+b \sin ^2(e+f x)\right )}{a}}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sec[e + f*x]^5*Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

-(Sec[e + f*x]^3*(1 + (b*Sin[e + f*x]^2)/a)*Tan[e + f*x]*(-15*a*ArcSin[Sqrt[-(((a + b)*Tan[e + f*x]^2)/a)]] -
10*b*ArcSin[Sqrt[-(((a + b)*Tan[e + f*x]^2)/a)]]*Sin[e + f*x]^2 - 30*a*Sqrt[(Sec[e + f*x]^2*(a + b*Sin[e + f*x
]^2))/a]*(-(((a + b)*Tan[e + f*x]^2)/a))^(3/2) - 20*b*Sin[e + f*x]^2*Sqrt[(Sec[e + f*x]^2*(a + b*Sin[e + f*x]^
2))/a]*(-(((a + b)*Tan[e + f*x]^2)/a))^(3/2) - 32*a*Hypergeometric2F1[2, 4, 7/2, -(((a + b)*Tan[e + f*x]^2)/a)
]*Sqrt[(Sec[e + f*x]^2*(a + b*Sin[e + f*x]^2))/a]*(-(((a + b)*Tan[e + f*x]^2)/a))^(5/2) - 32*b*Hypergeometric2
F1[2, 4, 7/2, -(((a + b)*Tan[e + f*x]^2)/a)]*Sin[e + f*x]^2*Sqrt[(Sec[e + f*x]^2*(a + b*Sin[e + f*x]^2))/a]*(-
(((a + b)*Tan[e + f*x]^2)/a))^(5/2) + 32*a*Hypergeometric2F1[2, 4, 7/2, -(((a + b)*Tan[e + f*x]^2)/a)]*Sqrt[(S
ec[e + f*x]^2*(a + b*Sin[e + f*x]^2))/a]*(-(((a + b)*Tan[e + f*x]^2)/a))^(7/2) + 32*b*Hypergeometric2F1[2, 4,
7/2, -(((a + b)*Tan[e + f*x]^2)/a)]*Sin[e + f*x]^2*Sqrt[(Sec[e + f*x]^2*(a + b*Sin[e + f*x]^2))/a]*(-(((a + b)
*Tan[e + f*x]^2)/a))^(7/2) + 15*a*Sqrt[-(((a + b)*Sec[e + f*x]^2*(a + b*Sin[e + f*x]^2)*Tan[e + f*x]^2)/a^2)]
+ 10*b*Sin[e + f*x]^2*Sqrt[-(((a + b)*Sec[e + f*x]^2*(a + b*Sin[e + f*x]^2)*Tan[e + f*x]^2)/a^2)]))/(40*f*Sqrt
[a + b*Sin[e + f*x]^2]*Sqrt[(Sec[e + f*x]^2*(a + b*Sin[e + f*x]^2))/a]*(-(((a + b)*Tan[e + f*x]^2)/a))^(3/2))

________________________________________________________________________________________

Maple [B]  time = 4.52, size = 570, normalized size = 4. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)^5*(a+b*sin(f*x+e)^2)^(1/2),x)

[Out]

1/16*(2*(a+b)^(3/2)*(a+b-b*cos(f*x+e)^2)^(1/2)*b*(3*a+4*b)*sin(f*x+e)*cos(f*x+e)^4+2*(a+b)^(3/2)*(a+b-b*cos(f*
x+e)^2)^(3/2)*(3*a+4*b)*cos(f*x+e)^2*sin(f*x+e)+4*(a+b)^(5/2)*(a+b-b*cos(f*x+e)^2)^(3/2)*sin(f*x+e)+a*(3*ln(2/
(-1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))*a^3+10*ln(2/(-1+sin(f*x+e))*((a+b)^(1
/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))*a^2*b+11*ln(2/(-1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2
)^(1/2)+b*sin(f*x+e)+a))*a*b^2+4*ln(2/(-1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))
*b^3-3*ln(2/(1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a))*a^3-10*ln(2/(1+sin(f*x+e))
*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a))*a^2*b-11*ln(2/(1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos
(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a))*a*b^2-4*ln(2/(1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*
x+e)+a))*b^3)*cos(f*x+e)^4)/(a+b)^(3/2)/cos(f*x+e)^4/(a^2+2*a*b+b^2)/f

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \sin \left (f x + e\right )^{2} + a} \sec \left (f x + e\right )^{5}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^5*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sin(f*x + e)^2 + a)*sec(f*x + e)^5, x)

________________________________________________________________________________________

Fricas [A]  time = 5.38284, size = 1079, normalized size = 7.55 \begin{align*} \left [\frac{{\left (3 \, a^{2} + 4 \, a b\right )} \sqrt{a + b} \cos \left (f x + e\right )^{4} \log \left (\frac{{\left (a^{2} + 8 \, a b + 8 \, b^{2}\right )} \cos \left (f x + e\right )^{4} - 8 \,{\left (a^{2} + 3 \, a b + 2 \, b^{2}\right )} \cos \left (f x + e\right )^{2} - 4 \,{\left ({\left (a + 2 \, b\right )} \cos \left (f x + e\right )^{2} - 2 \, a - 2 \, b\right )} \sqrt{-b \cos \left (f x + e\right )^{2} + a + b} \sqrt{a + b} \sin \left (f x + e\right ) + 8 \, a^{2} + 16 \, a b + 8 \, b^{2}}{\cos \left (f x + e\right )^{4}}\right ) + 4 \,{\left ({\left (3 \, a^{2} + 5 \, a b + 2 \, b^{2}\right )} \cos \left (f x + e\right )^{2} + 2 \, a^{2} + 4 \, a b + 2 \, b^{2}\right )} \sqrt{-b \cos \left (f x + e\right )^{2} + a + b} \sin \left (f x + e\right )}{32 \,{\left (a^{2} + 2 \, a b + b^{2}\right )} f \cos \left (f x + e\right )^{4}}, -\frac{{\left (3 \, a^{2} + 4 \, a b\right )} \sqrt{-a - b} \arctan \left (\frac{{\left ({\left (a + 2 \, b\right )} \cos \left (f x + e\right )^{2} - 2 \, a - 2 \, b\right )} \sqrt{-b \cos \left (f x + e\right )^{2} + a + b} \sqrt{-a - b}}{2 \,{\left ({\left (a b + b^{2}\right )} \cos \left (f x + e\right )^{2} - a^{2} - 2 \, a b - b^{2}\right )} \sin \left (f x + e\right )}\right ) \cos \left (f x + e\right )^{4} - 2 \,{\left ({\left (3 \, a^{2} + 5 \, a b + 2 \, b^{2}\right )} \cos \left (f x + e\right )^{2} + 2 \, a^{2} + 4 \, a b + 2 \, b^{2}\right )} \sqrt{-b \cos \left (f x + e\right )^{2} + a + b} \sin \left (f x + e\right )}{16 \,{\left (a^{2} + 2 \, a b + b^{2}\right )} f \cos \left (f x + e\right )^{4}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^5*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/32*((3*a^2 + 4*a*b)*sqrt(a + b)*cos(f*x + e)^4*log(((a^2 + 8*a*b + 8*b^2)*cos(f*x + e)^4 - 8*(a^2 + 3*a*b +
 2*b^2)*cos(f*x + e)^2 - 4*((a + 2*b)*cos(f*x + e)^2 - 2*a - 2*b)*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(a + b)*
sin(f*x + e) + 8*a^2 + 16*a*b + 8*b^2)/cos(f*x + e)^4) + 4*((3*a^2 + 5*a*b + 2*b^2)*cos(f*x + e)^2 + 2*a^2 + 4
*a*b + 2*b^2)*sqrt(-b*cos(f*x + e)^2 + a + b)*sin(f*x + e))/((a^2 + 2*a*b + b^2)*f*cos(f*x + e)^4), -1/16*((3*
a^2 + 4*a*b)*sqrt(-a - b)*arctan(1/2*((a + 2*b)*cos(f*x + e)^2 - 2*a - 2*b)*sqrt(-b*cos(f*x + e)^2 + a + b)*sq
rt(-a - b)/(((a*b + b^2)*cos(f*x + e)^2 - a^2 - 2*a*b - b^2)*sin(f*x + e)))*cos(f*x + e)^4 - 2*((3*a^2 + 5*a*b
 + 2*b^2)*cos(f*x + e)^2 + 2*a^2 + 4*a*b + 2*b^2)*sqrt(-b*cos(f*x + e)^2 + a + b)*sin(f*x + e))/((a^2 + 2*a*b
+ b^2)*f*cos(f*x + e)^4)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)**5*(a+b*sin(f*x+e)**2)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \sin \left (f x + e\right )^{2} + a} \sec \left (f x + e\right )^{5}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^5*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sin(f*x + e)^2 + a)*sec(f*x + e)^5, x)